In this chapter, we provide RS Aggarwal Solutions for Class 10 Chapter 11 Arithmetic Progressions Ex 11D Maths for English medium students, Which will very helpful for every student in their exams. Students can download the latest RS Aggarwal Solutions for Class 10 Chapter 11 Arithmetic Progressions Ex 11D Maths pdf, free RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11D Maths book pdf download. Now you will get step by step solution to each question.

Textbook | NCERT |

Class | Class 10 |

Subject | Maths |

Chapter | Chapter 11 |

Chapter Name | Arithmetic Progressions |

Exercise | 11 D |

Category | RS Aggarwal Solutions |

**RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11D** **PDF**

**Question 1.****Solution:**

(3y – 1), (3y + 5) and (5y+ 1) are in AP

(3y + 5) – (3y – 1) = (5y + 1) – (3y + 5)

⇒ 2 (3y + 5) = (5y + 1) + (3y – 1)

⇒ 6y + 10 = 8y

⇒ 8y – 6y = 10

⇒ 2y = 10

⇒ y = 5

y = 5

**Question 2.****Solution:**

k, (2k – 1) and (2k + 1) are the three successive terms of an AP.

(2k – 1) – k = (2k + 1) – (2k – 1)

⇒ 2 (2k – 1) = 2k + 1 + k

⇒ 4k – 2 = 3k + 1

⇒ 4k – 3k = 1 + 2

⇒ k = 3

k = 3

**Question 3.****Solution:**

18, a, (b – 3) are in AP

⇒ a – 18 = b – 3 – a

⇒ a + a – b = -3 + 18

⇒ 2a – b = 15

**Question 4.****Solution:**

a, 9, b, 25 are in AP.

9 – a = b – 9 = 25 – b

b – 9 = 25 – b

⇒ b + b = 22 + 9 = 34

⇒ 2b = 34

⇒ b= 17

a – b = a – 9

⇒ 9 + 9 = a + b

⇒ a + b = 18

⇒ a + 17 = 18

⇒ a = 18 – 17 = 1

a = 18, b= 17

**Question 5.****Solution:**

(2n – 1), (3n + 2) and (6n – 1) are in AP

(3n + 2) – (2n – 1) = (6n – 1) – (3n + 2)

⇒ (3n + 2) + (3n + 2) = 6n – 1 + 2n – 1

6n + 4 = 8n – 2

⇒ 8n – 6n = 4 + 2

⇒ 2n = 6

⇒ n = 3

and numbers are

2 x 3 – 1 = 5

3 x 3 + 2 = 11

6 x 3 – 1 = 17

i.e. (5, 11, 17) are required numbers.

**Question 6.****Solution:**

Three digit numbers are 100 to 990 and numbers which are divisible by 7 will be

105, 112, 119, 126, …, 994

Here, a = 105, d= 7, l = 994

T_{n} = (l) = a + (n – 1) d

⇒ 994 = 105 + (n – 1) x 7

⇒ 994 – 105 = (n – 1) 7

⇒ (n – 1) x 7 = 889

⇒ n – 1 = 127

⇒ n = 127 + 1 = 128

Required numbers are 128

**Question 7.****Solution:**

Three digit numbers are 100 to 999

and numbers which are divisible by 9 will be

108, 117, 126, 135, …, 999

Here, a = 108, d= 9, l = 999

T_{n }(l) = a + (n – 1) d

⇒ 999 = 108 + (n – 1) x 9

⇒ (n – 1) x 9 = 999 – 108 = 891

⇒ n – 1 = 99

⇒ n = 99 + 1 = 100

**Question 8.****Solution:**

Sum of first m terms of an AP = 2m² + 3m

S_{m} = 2m² + 3m

S_{1} = 2(1)² + 3 x 1 = 2 + 3 = 5

S_{2} = 2(2)² + 3 x 2 = 8 + 6=14

S_{3} = 2(3)² + 3 x 3 = 18 + 9 = 27

Now, T_{2} = S_{2} – S_{1} = 14 – 5 = 9

Second term = 9

**Question 9.****Solution:**

AP is a, 3a, 5a, …

Here, a = a, d = 2a

**Question 10.****Solution:**

AP 2, 7, 12, 17, …… 47

Here, a = 2, d = 7 – 2 = 5, l = 47

nth term from the end = l – (n – 1 )d

5th term from the end = 47 – (5 – 1) x 5 = 47 – 4 x 5 = 47 – 20 = 27

**Question 11.****Solution:**

AP is 2, 7, 12, 17, …

Here, a = 2, d = 7 – 2 = 5

a_{n} = a + (n – 1) d = 2 + (n – 1) x 5 = 2 + 5n – 5 = 5n – 3

Now, a_{30} = 2 + (30 – 1) x 5 = 2 + 29 x 5 = 2 + 145 = 147

and a_{20} = 2 + (20 – 1) x 5 = 2 + 19 x 5 = 2 + 95 = 97

a_{30} – a_{20} = 147 – 97 = 50

**Question 12.****Solution:**

T_{n} = 3n + 5

T_{n-1} = 3 (n – 1) + 5 = 3n – 3 + 5 = 3n + 2

d = T_{n} – T_{n-1} = (3n + 5) – (3n + 2) = 3n + 5 – 3n – 2 = 3

Common difference = 3

**Question 13.****Solution:**

T_{n }= 7 – 4n

T_{n-1} = 7 – 4(n – 1) = 7 – 4n + 4 = 11 – 4n

d = T_{n} – T_{n-1} = (7 – 4n) – (11 – 4n) = 7 – 4n – 11 + 4n = -4

d = -4

**Question 14.****Solution:**

AP is √8, √18, √32, …..

⇒ √(4 x 2) , √(9 x 2) , √(16 x 2), ………

**Question 15.****Solution:**

**Question 16.****Solution:**

AP is 21, 18, 15, …n

Here, a = 21, d = 18 – 21 = -3, l = 0

T_{n} (l) = a + (n – 1) d

0 = 21 + (n – 1) x (-3)

0 = 21 – 3n + 3

⇒ 24 – 3n = 0

⇒ 3n = 24

⇒ n = 8 .

0 is the 8th term.

**Question 17.****Solution:**

First n natural numbers are 1, 2, 3, 4, 5, …, n

Here, a = 1, d = 1

**Question 18.****Solution:**

First n even natural numbers are 2, 4, 6, 8, 10, … n

Here, a = 2, d = 4 – 2 = 2

**Question 19.****Solution:**

In an AP

First term (a) = p

and common difference (d) = q

T_{10} = a + (n – 1) d = p + (10 – 1) x q = (p + 9q)

**Question 20.****Solution:**

**Question 21.****Solution:**

2p + 1, 13, 5p – 3 are in AP, then

13 – (2p + 1) = (5p – 3) – 13

⇒ 13 – 2p – 1 = 5p – 3 – 13

⇒ 12 – 2p = 5p – 16

⇒ 5p + 2p = 12 + 16

⇒ 7p = 28

⇒ p = 4

P = 4

**Question 22.****Solution:**

(2p – 1), 7, 3p are in AP, then

⇒ 7 – (2p – 1) = 3p – 7

⇒ 7 – 2p + 1 = 3p – 7

⇒ 7 + 1 + 7 = 3p + 2p

⇒ 5p = 15

⇒ p = 3

P = 3

**Question 23.****Solution:**

**Question 24.****Solution:**

d = T_{2} – T_{1} = 14 – 8 = 6

Common difference = 6

**Question 25.****Solution:**

**Question 26.****Solution:**

**Question 27.****Solution:**

**All Chapter RS Aggarwal Solutions For Class 10 Maths**

—————————————————————————–**All Subject NCERT Exemplar Problems Solutions For Class10**

**All Subject NCERT Solutions For Class 10**

*************************************************

I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment on the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.

If these solutions have helped you, you can also share rsaggarwalsolutions.in to your friends.